Tourism Logistics - โลจิสติกส์สำหรับการท่องเที่ยว

Home Tourism Logistics Research papers AIRLINE MARKET SEGMENTS AFTER LOW COST AIRLINES IN THAILAND
Welcome


Tourism
Logistics



CMSE
Conference



Journal EEQEL




คลังหนังสือ
Komsan
Suriya



















AIRLINE MARKET SEGMENTS AFTER LOW COST AIRLINES IN THAILAND Print E-mail

: PASSENGER CLASSIFICATION USING NEURAL NETWORKS AND LOGIT MODEL

WITH SELECTIVE LEARNING


SURIYA, KOMSAN*

*Faculty of Economics, Chiang Mai University,


ABSTRACT


Competition in airline business is severe after an introduction of low cost airlines. In Thailand, three low cost airlines occupied one-third of domestic market at the end of 2005. Their growth rate, 47 percent, surpassed the industrial growth rate at the expense of full-service airlines. One million passengers of full-service airlines were lost to low cost airlines in 2005. The competition drives airlines to clarify their market segments. Passenger information is crucial for retargeting and repositioning. In this study, questionnaires were collected from 468 Thai passengers at Chiang Mai International Airport during October to November 2005. Clients of full-service airlines and low cost airlines shared equally in the allocation of questionnaires. Neural Networks, an alternative technique for airline passenger classification, was benchmarked to a traditional econometric model, Logit. Information from 368 passengers was included into the learning process of models whereas 100 were used for validation. In prediction, Logit model showed little advantage over Neural Networks. However, transmission of only significant variables from Logit model to the learning process of Neural Networks, the selective learning, raised 7 percentage points in accuracy over mere Neural Networks and 2 percentage points over Logit model. Based on the prediction, 64 percent of Thailand?s domestic air passenger transportation could be clearly separated into two dominant markets for full-service airlines and low cost airlines. The remaining 36 percent was still an overlapping market segment. Tourist was a significant group in this overlapping segment. Therefore, capturing tourists? preference will yield higher advantage in the airline business competition.


 
Keywords: Airline business, Market segmentation, Neural Networks, Logit model, Selective learning




-----------------------------------------------------------------------------------------------------------------
Proceeding presented in the 12th Asia Pacific Tourism Association and 4th Asia Pacific CHRIE joint international conference, June 26th ? 29th, 2006, Hualien, Taiwan.

Download Full Text (PDF File)


 
 

เกี่ยวกับลิขสิทธิ์เนื้อหาในเว็บไซต์ิ์

ผู้เขียนไม่หวงห้ามที่ท่านจะคัดลอกบทความ บนเว็บไซต์นี้ไปใช้ในรายงานของท่าน  

แต่ขอความกรุณาเพื่อนนักวิชาการ เพื่อนผู้ทำเว็ปไซต์ 
น้อง ๆ นักเรียน นักศึกษา ทุกท่าน 
ได้โปรดเขียนอ้างอิงในรายงานของท่านตามหลักสากล

การไม่เขียนอ้างอิงดังกล่าวถือว่าละเมิดลิขสิทธิ์
และมีความผิดตามกฎหมาย  
 
 ขอขอบคุณทุกท่านมากครับ